Reverse osmosis (RO) is a filtration method that removes many types of large molecules and ions from solutions by applying pressure to the solution when it is on one side of a selective membrane. The result is that the solute is retained on the pressurized side of the membrane and the pure solvent is allowed to pass to the other side. To be "selective," this membrane should not allow large molecules or ions through the pores (holes), but should allow smaller components of the solution (such as the solvent) to pass freely.

0
Reverse Osmosis Systems

In the normal osmosis process the solvent naturally moves from an area of low solute concentration, through a membrane, to an area of high solute concentration. The movement of a pure solvent to equalize solute concentrations on each side of a membrane generates a pressure and this is the "osmotic pressure." Applying an external pressure to reverse the natural flow of pure solvent, thus, is reverse osmosis. The process is similar to membrane filtration. However, there are key differences between reverse osmosis and filtration. The predominant removal mechanism in membrane filtration is straining, or size exclusion, so the process can theoretically achieve perfect exclusion of particles regardless of operational parameters such as influent pressure and concentration. Reverse osmosis, however, involves a diffusive mechanism so that separation efficiency is dependent on solute concentration, pressure, and water flux rate. Reverse osmosis is most commonly known for its use in drinking water purification from seawater, removing the salt and other substances from the water molecules.

History

The process of osmosis through semipermeable membranes was first observed in 1748 by Jean Antoine Nollet. For the following 200 years, osmosis was only a phenomenon observed in the laboratory. In 1949, the University of California at Los Angeles (UCLA) first investigated desalination of seawater using semipermeable membranes. Researchers from both UCLA and the University of Florida successfully produced fresh water from seawater in the mid-1950s, but the flux was too low to be commercially viable. By the end of 2001, about 15,200 desalination plants were in operation or in the planning stages worldwide.

Process

A semipermeable membrane coil used in desalinization.
Osmosis is a natural process. When two liquids of different concentration are separated by a semi permeable membrane, the fluid has a tendency to move from low to high concentrations for chemical potential equilibrium.
Formally, reverse osmosis is the process of forcing a solvent from a region of high solute concentration through a semipermeable membrane to a region of low solute concentration by applying a pressure in excess of the osmotic pressure.
The membranes used for reverse osmosis have a dense barrier layer in the polymer matrix where most separation occurs. In most cases, the membrane is designed to allow only water to pass through this dense layer, while preventing the passage of solutes (such as salt ions). This process requires that a high pressure be exerted on the high concentration side of the membrane, usually 2–17 bar (30–250 psi) for fresh and brackish water, and 40–70 bar (600–1000 psi) for seawater, which has around 27 bar (390 psi) natural osmotic pressure that must be overcome. This process is best known for its use in desalination (removing the salt and other minerals from sea water to get fresh water), but since the early 1970s it has also been used to purify fresh water for medical, industrial, and domestic applications.
Osmosis describes how solvent moves between two solutions separated by a permeable membrane to reduce concentration differences between the solutions. When two solutions with different concentrations of a solute are mixed, the total amount of solutes in the two solutions will be equally distributed in the total amount of solvent from the two solutions. Instead of mixing the two solutions together, they can be put in two compartments where they are separated from each other by a semipermeable membrane. The semipermeable membrane does not allow the solutes to move from one compartment to the other, but allows the solvent to move. Since equilibrium cannot be achieved by the movement of solutes from the compartment with high solute concentration to the one with low solute concentration, it is instead achieved by the movement of the solvent from areas of low solute concentration to areas of high solute concentration. When the solvent moves away from low concentration areas, it causes these areas to become more concentrated. On the other side, when the solvent moves into areas of high concentration, solute concentration will decrease. This process is termed osmosis. The tendency for solvent to flow through the membrane can be expressed as "osmotic pressure", since it is analogous to flow caused by a pressure differential. Osmosis is an example of diffusion.
In reverse osmosis, in a similar setup as that in osmosis, pressure is applied to the compartment with high concentration. In this case, there are two forces influencing the movement of water: the pressure caused by the difference in solute concentration between the two compartments (the osmotic pressure) and the externally applied pressure.

Applications

Drinking water purification
Marines from Combat Logistics Battalion 31 operate ROWPUs for relief efforts after the 2006 Southern Leyte mudslide
Around the world, household drinking water purification systems, including a reverse osmosis step, are commonly used for improving water for drinking and cooking.
Such systems typically include a number of steps:
  • a sediment filter to trap particles, including rust and calcium carbonate
  • optionally, a second sediment filter with smaller pores
  • an activated carbon filter to trap organic chemicals and chlorine, which will attack and degrade TFC reverse osmosis membranes
  • a reverse osmosis (RO) filter, which is a thin film composite membrane (TFM or TFC)
  • optionally, a second carbon filter to capture those chemicals not removed by the RO membrane
  • optionally an ultra-violet lamp for disinfecting any microbes that may escape filtering by the reverse osmosis membrane
In some systems, the carbon prefilter is omitted, and cellulose triacetate membrane (CTA) is used. The CTA membrane is prone to rotting unless protected by chlorinated water, while the TFC membrane is prone to breaking down under the influence of chlorine. In CTA systems, a carbon postfilter is needed to remove chlorine from the final product water.
Portable reverse osmosis (RO) water processors are sold for personal water purification in various locations. To work effectively, the water feeding to these units should best be under some pressure (40 psi or greater is the norm). Portable RO water processors can be used by people who live in rural areas without clean water, far away from the city's water pipes. Rural people filter river or ocean water themselves, as the device is easy to use (saline water may need special membranes). Some travelers on long boating, fishing, or island camping trips, or in countries where the local water supply is polluted or substandard, use RO water processors coupled with one or more UV sterilizers. RO systems are also now extensively used by marine aquarium enthusiasts. In the production of bottled mineral water, the water passes through an RO water processor to remove pollutants and microorganisms. In European countries, though, such processing of Natural Mineral Water (as defined by a European Directive) is not allowed under European law. In practice, a fraction of the living bacteria can and do pass through RO membranes through minor imperfections, or bypass the membrane entirely through tiny leaks in surrounding seals. Thus, complete RO systems may include additional water treatment stages that use ultraviolet light or ozone to prevent microbiological contamination.
Membrane pore sizes can vary from 0.1 nanometres (3.9×10−9 in) to 5,000 nanometres (0.00020 in) depending on filter type. "Particle filtration" removes particles of 1 micrometre (3.9×10−5 in) or larger. Microfiltration removes particles of 50 nm or larger. "Ultrafiltration" removes particles of roughly 3 nm or larger. "Nanofiltration" removes particles of 1 nm or larger. Reverse osmosis is in the final category of membrane filtration, "hyperfiltration", and removes particles larger than 0.1 nm.
In the United States military, Reverse Osmosis Water Purification Units are used on the battlefield and in training. Capacities range from 1,500 to 150,000 imperial gallons (6,800 to 680,000 l) per day, depending on the need. The most common of these are the 600 and 3,000 gallons per hour units; both are able to purify salt water and water contaminated with chemical, biological, radiological, and nuclear agents from the water. During 24-hour period, at normal operating parameters, one unit can produce 12,000 to 60,000 imperial gallons (55,000 to 270,000 l) of water, with a required 4-hour maintenance window to check systems, pumps, RO elements and the engine generator. A single ROWPU can sustain a force the size of a battalion, or roughly 1,000 to 6,000 servicemembers.
Water and wastewater purification
Rain water collected from storm drains is purified with reverse osmosis water processors and used for landscape irrigation and industrial cooling in Los Angeles and other cities, as a solution to the problem of water shortages.
In industry, reverse osmosis removes minerals from boiler water at power plants. The water is boiled and condensed repeatedly. It must be as pure as possible so that it does not leave deposits on the machinery or cause corrosion. The deposits inside or outside the boiler tubes may result in under-performance of the boiler, bringing down its efficiency and resulting in poor steam production, hence poor power production at turbine.
It is also used to clean effluent and brackish groundwater. The effluent in larger volumes (more than 500 cu. meter per day) should be treated in an effluent treatment plant first, and then the clear effluent is subjected to reverse osmosis system. Treatment cost is reduced significantly and membrane life of the RO system is increased.
The process of reverse osmosis can be used for the production of deionized water.
RO process for water purification does not require thermal energy. Flow through RO system can be regulated by high pressure pump. The recovery of purified water depend upon various factor including - membrane sizes, membrane pore size, temperature, operating pressure and membrane surface area.
In 2002, Singapore announced that a process named NEWater would be a significant part of its future water plans. It involves using reverse osmosis to treat domestic wastewater before discharging the NEWater back into the reservoirs.

-wikipedia-

RO System

Archive

 
Reverse Osmosis Systems | © 2010 by DheTemplate.com | Supported by Promotions And Coupons Shopping & WordPress Theme 2 Blog